def in_naturals(): index = 1 while True: yield index index += 1 # n=exponent; a=basis def pot_loop2(n, a, loops): result = 1 for i in in_naturals(): if i == loops: break result = result * a return result
print(pot_loop2(10, 2, 11))
ausführen
def nat(): index = 0 while True: yield index index += 1 def f(x, y): for z in range(0, y + 1): if ((z + 1) ** 2) > x: return z
print(f(19, 19))
def muehf(n): m = 0 while ((m ** 2) - n) != 0: m += 1 n = m print(n)
muehf(4)
Ergebnis "None" entspricht "⊥"
def muehf(x): for y in range(100): if x % 2 + y == 0: return y
print(muehf(10)) print(muehf(5))
def muehf_alt(x): for y in range(100): if x % 2 - y == 0: return y
print(muehf_alt(10)) print(muehf_alt(5))
Als while-Schleifen Implementierung:
def muehff(x): y = 0 while monus(x % 2, y) != 0: y += 1 print(y) def monus(a, b): if a - b < 0: return 0 else: return a - b
muehff(10) muehff(5)
def muehf_alt_z(x): for y in range(100): if x ** 2 - y == 0: return y
print(muehf_alt_z(10)) print(muehf_alt_z(5))
def muehf_alt_d(x): for y in range(100): print(y ** 2 - x) if y ** 2 - x == 0: return y
print(muehf_alt_d(10)) print(muehf_alt_d(5))
def prim_get(lower, upper): for num in range(lower, upper + 1): # all prime numbers are greater than 1 if num > 1: for i in range(2, num): if (num % i) == 0: break else: return num def is_prime(num): if num > 1: # Iterate from 2 to n / 2 for i in range(2, int(num/2)+1): # If num is divisible by any number between # 2 and n / 2, it is not prime if (num % i) == 0: return False break else: return True else: return True def prim(x): for y in range(100): if is_prime(y) is True and y > x: print(0, y) else: print(1, y) return
prim(10) prim(5)
def g(m): for n in range(1, 100): if m != 0 and m % n == 0: return n/m
print(g(10)) print(g(5))