Vorlesung 11 Merkelt
Aus ProgrammingWiki
Inhaltsverzeichnis |
Folie 6
$mult(0, n) = 0$
$mult(S(m), n) = add(mult(m, n), n)$
$pot(0, n) = 1$
$pot(S(m), n) = mult(pot(m, n), n)$
Folie 16
$S^2_*(q,m) = S(S(...S(m))...)$
Nach Schema:
$S^2_*(0,m) = f(m)$
$S^2_*(S(n),m) = g(n,h(n,m),m)$
$f(m) = U^1_1(m) = m$
$g(a,b,c) = S(U^3_2(a,b,c))$
$h(n,m) = S^2_*(n,m)$
finale $\mu$-rekursive Vorschrift:
$S^2_*(0,m) = U^1_1(m) = m$
$S^2_*(S(n),m) = S(U^3_2(n,S^2_*(n,m),m))$
Folie 32
Nur die Tabellen benutzen:
nr | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
2 | 3 | 5 | 7 | 9 | 11 | ||||||
3 | 5 | ||||||||||
4 | |||||||||||
5 |
Mit Schema weiter verfolgen:
nr | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
2 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 |
3 | 5 | 13 | 29 | 61 | 125 | 253 | 509 | 1021 | 2045 | 4093 | 8189 |
4 | 13 | ||||||||||
5 |
Bildungsvorschriften:
(0) $m + 1$
(1) $m + 2$
(2) $2m + 3$
(3) $2^{m+3} - 3$
Folie 35
Folie 39
Folie 41
Fakultät
Abstandsfunktion
Folie 45 (1)
Folie 45 (2)
$F_1(4,6) = F_0(F_1(4,5),F_1(4,5)+5+1) = F_0(185,191) = 376$
$F_1(4,5) = F_0(F_1(4,4),F_1(4,4)+4+1) = F_0(90,95) = 185$
$F_1(4,4) = F_0(F_1(4,3),F_1(4,3)+3+1) = F_0(43,47) = 90$
$F_1(4,3) = F_0(F_1(4,2),F_1(4,2)+2+1) = F_0(20,23) = 43$
$F_1(4,2) = F_0(F_1(4,1),F_1(4,1)+1+1) = F_0(9,11) = 20$
$F_1(4,1) = F_0(F_1(4,0),F_1(4,0)+0+1) = F_0(4,5) = 9$
$F_1(4,0) = 4$
$F_2(2,1) = F_1(F_2(2,0),F_2(2,0)+0+1) = F_1(2,3) = 27$
$F_2(2,0) = 2$
$F_1(2,3) = F_0(F_1(2,2),F_1(2,2)+2+1) = F_0(12,15) = 27$
$F_1(2,2) = F_0(F_1(2,1),F_1(2,1)+1+1) = F_0(5,7) = 12$
$F_1(2,1) = F_0(F_1(2,0),F_1(2,0)+0+1) = F_0(2,3) = 5$
$F_1(2,0) = 2$