Raten und Einsetzen Konstruktive Induktion Computeralgebrasysteme CAS Iterationsmethode Die Mastermethode

Hilfsmittel Mathematik" Rekursionsgleichungen

M. Neumann, C. Piechotta

30. März 2009

Motivation

Motivation!

Motivation ist Alles ...

Definition der Fibonacci-Zahlenfolge

$$\begin{array}{l} F(0) = 1 \\ F(1) = 1 \\ F(n) = F(n-1) + F(n-2), \text{ mit } n \geq 2 \end{array}$$

rekursive Berechnungsvorschrift

```
(define fib

(lambda (n)

(if(< n 1)

1

(+(fib(- n 1))(fib(- n 2))))))
```

rekursive Berechnungsvorschrift

rekursive Berechnungsvorschrift

```
(define fib

(lambda (n)

(if(< n 2)

1

(+(fib(- n 1))(fib(- n 2))))))
```

rekursive Aufwandsgleichung

$$\begin{array}{l} T(0) = 1 \\ T(1) = 1 \\ T(n) = T(n\text{-}1) + T(n\text{-}2), \text{ mit } n \geq 2 \end{array}$$

explizite Gleichung

Inhaltsverzeichnis

- Raten und Einsetzen
- 2 Konstruktive Induktion
- 3 Computeralgebrasysteme CAS
- 4 Iterationsmethode
- Die Mastermethode

Raten und Einsetzen

- intelligent guesswork Intelligentes Raten
- Wertetabelle aufstellen
- explizite Bildungsvorschrift ermitteln

Konstruktive Induktion

- Vermutung aufstellen
- 2 für das Anfangsglied beweisen(z.B. n=1)
- \odot für alle Folgeglieder beweisen (z.B. n+1)

Computeralgebrasysteme CAS

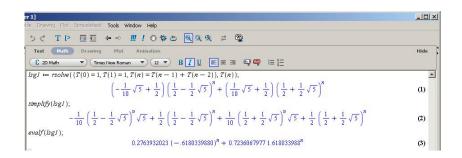
- computergestützte Werkzeuge
- lösen numerische oder symbolische Aufgaben (z.B. Gleichungsumformung)
- basieren auf unterschiedlichen mathematischen Grundlagen
- z.B. Matlab, Mathematica, Maple, Maxima

Lösung rekursiver Gleichungen

- basierend auf komplexen Z-Transformationen
- Implementierung für bestimmte Gleichungsklassen
- → nur bestimmte Gleichungen lösbar

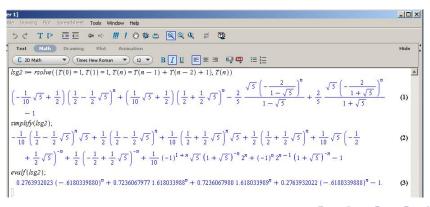
Aufwandsgleichung der Fibonacci-Folge mit Maple

Mit einfachem Aufwand



Aufwandsgleichung der Fibonacci-Folge mit Maple

Mit höherem Aufwand



Iterationsmethode

- Idee \Rightarrow Rekursion \approx Schleife
- Erweitere die Gleichung bis zu einem rekursionsfreien n
- Danach beende die Iteration

Beispiel

•
$$T(1) = 1$$

•
$$T(n) = 3 \cdot T(\frac{n}{4}) + n$$
, $mitn = 4^a \setminus a \in \mathbf{N}$

Expansion der Gleichung

•
$$T(n) = n + 3 \cdot T(\frac{n}{4})$$

• . . .

•
$$T(n) = n + \frac{3}{4}n + \frac{9}{16}n + \frac{27}{64}n + \cdots + \frac{3^{i-1}}{4^{i-1}}n + 3^i \cdot T(\frac{n}{4^i})$$

•
$$T(n) = n \sum_{k=0}^{i-1} (\frac{3}{4})^k + 3^i$$

•
$$T(n) = n \cdot \frac{1 - (\frac{3}{4})^i}{\frac{1}{4}} + 3^i$$

•
$$T(n) = 4n - 4n(\frac{3}{4})^i + 3^i$$

- ...
- ≲ n
- T(n) = O(n)

Die Mastermethode

Diese Methode funktioniert in etwa nach dem Aschenputtelprinzip - finde den passenden Schuh.

Allerdings nicht immer mit Happy End!

Der Satz

Sind $n \ge 1$ und $b \ge 1$ Konstanten sowie $f: \mathbb{N} \mapsto \mathbb{R}$ und $T: \mathbb{N} \mapsto \mathbb{R}$ Funktionen, der Form: $T(n) = a \cdot T(\frac{n}{b}) + f(n)$ Dann gilt für T(n):

- Wenn $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ für eine reele Konstante $\epsilon > 0$, dann gilt $\mathcal{T}(n) = \Theta(n^{\log_b a})$.
- ② Wenn $f(n) = \Theta(n^{\log_b a})$, dann gilt $T(n) = \Theta(n^{\log_b a} \log_2 n)$.
- **3** Wenn $f(n) = \Omega(n^{\log_b a + \epsilon})$ für beliebige reelle Konstanten $\epsilon > 0$ und wenn $a \cdot f(\frac{n}{b}) \le c \cdot f(n)$, mit eineer reellen Konstante c > 0, dann gilt $T(n) = \Theta(f(n))$.

Beachte

- T(n) und f(n) sind voneinander unabhängig
- $a \ge 1, b > 1$
- f(n) wird immer mit $n^{\log_b a}$ verglichen
- f(n) bezeichnet Kombinationsaufwand

$$T(n) = 8 \cdot T(\frac{n}{2}) + 1000n^2.$$

- $a = 8, b = 2 \Rightarrow \log_2 8 = 3$
- $\bullet \hookrightarrow \mathcal{O}(n^3)$
- $f(n) \approx \mathcal{O}(n^2)$
- mit $\mathcal{O}(n^{3-\varepsilon}) \Rightarrow \varepsilon = 1$
- ε > 0

$$T(n) = 2 \cdot T(\frac{n}{2}) + n.$$

•
$$a = 2, b = 2 \Rightarrow \log_2 2 = 1$$

$$\bullet \hookrightarrow \mathcal{O}(n)$$

•
$$f(n) = n^{\log_2 2} \approx \theta(n)$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + n^2.$$

- $a = 2, b = 2 \Rightarrow \log_2 2 = 1$
- $\bullet \hookrightarrow \mathcal{O}(n)$
- $f(n) \approx \mathcal{O}(n^2)$
- mit $\mathcal{O}(n^{1+\varepsilon}) \Rightarrow \varepsilon = 1$
- ε > 0
- Ausserdem : $a \cdot f(\frac{n}{b}) \le c \cdot f(n) \setminus 0 < c < 1$
- $c = \frac{1}{2}$

$$T(n) = 2 \cdot T(\frac{n}{2}) + n \log_2 n.$$

- $a = 2, b = 2 \Rightarrow \log_2 2 = 1$
- $\hookrightarrow \mathcal{O}(n)$
- Aber: $f(n) : \mathcal{O}(n \log_2 n)$

Der Satz Beachte Fall 1 Fall Fall 3 Fall 4

Danke

Vielen Dank für eure Aufmerksamkeit.